Practical Reflex Integration for Every Body

by

We interviewed Eve Kodiak – musician, educator, healer and writer – about practical reflex integration for every body on and off the spectrum. Eve discussed practical, do-it-yourself-at-home exercises for primitive reflex integration.


Children with neurodevelopmental disorders typically have retained primitive reflexes that prevent proper social, emotional, gross-motor, fine-motor and academic development. Examples of neurodevelopmental disorders are autism, ADHD, Sensory Processing Disorder, dyslexia, learning disabilities, apraxia/dyspraxia and developmental delays.

Eve emphasized the importance of music and sound in proper neurodevelopment. She also talked about movements that can calm the body and brain, leading to better behavior and social outcomes.

Please note that you will be asked to enter your email address at the 30-minute mark to finish viewing the video.

About Eve Kodiak MM

Eve Kodiak MMEve provides Brain Gym®, craniosacral therapy and sound healing services at the Lydian Center for Innovative Healthcare in Cambridge, MA. She holds a license in Educational Kinesiology and degrees from Harvard University and the New England Conservatory of Music. She has combined her professional interests in music and developmental movement into a modality she calls SOUND INTELLIGENCE.

Eve frames all of her work within the form of a “Brain Gym® balance.” This educational framework involves setting a goal with the client, and then achieving it through neurologically directed movement. “Movement” is a broad category, and Eve Kodiak’s clients may find themselves engaged in a variety of activities – from lying on the massage table receiving Craniosacral Therapy, to experiencing the vibrations of tuning forks in perfect Pythagorean fifths, to moving though infant reflex patterns, to improvising on the piano, to drawing or building with blocks, to simply talking.

The path of each healing session is as individual as each person’s life.

Disclaimer

This webinar is not a substitute for medical advice, treatment, diagnosis, or consultation with a medical professional. It is intended for general informational purposes only and should not be relied on to make determinations related to treatment of a medical condition. Epidemic Answers has not verified and does not guaranty the accuracy of the information provided in this webinar.

Still Looking for Answers?

Visit the Epidemic Answers Practitioner Directory to find a practitioner near you.

Join us inside our online membership community for parents, Healing Together, where you’ll find even more healing resources, expert guidance, and a community to support you every step of your child’s healing journey.

Sources & References

Amos, P. Rhythm and timing in autism: learning to dance. Front Integr Neurosci. 2013 Apr 19;7:27.

Barnhill, E. Neural connectivity, music, and movement: a response to Pat Amos. Front Integr Neurosci. 2013 Apr 24;7:29.

Cho, H., et al. Effects of Action Observation Training with Auditory Stimulation on Static and Dynamic Balance in Chronic Stroke Patients. J Stroke Cerebrovasc Dis. 2020 May;29(5):104775.

Grigg, T.M., et al. Retained primitive reflexes: Perceptions of parents who have used Rhythmic Movement Training with their children. J Child Health Care. 2018 Sep;22(3):406-418.

Grzywniak, C. Integration exercise programme for children with learning difficulties who have preserved vestigial primitive reflexes. Acta Neuropsychologica. 2017;15(3).

Hardy, M.W., et al. Rhythm, movement, and autism: using rhythmic rehabilitation research as a model for autism. Front Integr Neurosci. 2013 Mar 28;7:19.

Herbert, J., et al. Crawling is associated with more flexible memory retrieval by 9-month-old infants. Dev Sci. 2007 Mar;10(2):183-9.

Hong, H.J., et al. Effect of Rhythmic Movement Program to Improve Walking Ability for Elderly Patients with Stroke. Indian Journal of Science and Technology. 2016 Jul;9(26).

Iverson, J.M. Developing language in a developing body: the relationship between motor development and language development. J Child Lang. 2010 Mar;37(2):229-61.

Jordan-Black, J. The effects of the Primary Movement programme on the academic performance of children attending ordinary primary school. Journal of Research in Special Educational Needs. 2005 Nov;5(3):101 – 111.

Kadivar, Z., et al. Effect of step training and rhythmic auditory stimulation on functional performance in Parkinson patients. Neurorehabil Neural Repair. 2011 Sep;25(7):626-35.

Ladányi, K. et al. Is atypical rhythm a risk factor for developmental speech and language disorders? Wiley Interdiscip Rev Cogn Sci. 2020 Sep;11(5):e1528.

Lakatos, P., et al. A New Unifying Account of the Roles of Neuronal Entrainment. Curr Biol. 2019 Sep 23;29(18):R890-R905.

McWhirter, K., et al. The association between learning disorders, motor function, and primitive reflexes in pre-school children: A systematic review. J Child Health Care. 2022 Jul 13;13674935221114187.

Melillo, R., et al. Persistent Childhood Primitive Reflex Reduction Effects on Cognitive, Sensorimotor, and Academic Performance in ADHD. Front Public Health. 2020 Nov 17;8:431835.

Suh, J.H., et al. Effect of rhythmic auditory stimulation on gait and balance in hemiplegic stroke patients. NeuroRehabilitation. 2014;34(1):193-9.

Van Hirtum, T., et al. Is atypical rhythm a riskfactor for developmental speech and language disorders? J Assoc Res Otolaryngol. 2021 Jul;22(4):465-480.

Winkler, I., et al. Newborn infants detect the beat in music. Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2468-71.

Zaigham, M., et al. Prelabour caesarean section and neurodevelopmental outcome at 4 and 12 months of age: an observational study. BMC Pregnancy and Childbirth. 2020 (20)564.

Zentner, M., et al. Rhythmic engagement with music in infancy. Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5768-73.

Back to webinars