Environmental Toxicity

Today we live in a world of full of environmental toxicity and potential toxic exposures.

Every inch of the planet has been exposed to some human tampering that has affected the air, water, soil, climate, food supply, homes, and businesses.

There is no doubt that Americans live in a toxic world, on a scale never seen before in human history.

The most vulnerable members of our society, our children, are beginning to show this toxic burden through the development of terminal and chronic illnesses.

Photo credit to © Juan Nel | dreamstime.com

There are two main concerns with children’s exposure to environmental toxins.

First, certain toxins can be extremely harmful to cells and tissues of the body.

For instance, mercury, ubiquitous in our environment, is a known neurotoxin that can cause neurodevelopmental delays and dysfunction.

It is in our air, our water, and even our soil and food.

Children with chronic illnesses have been found to have high levels of heavy metals, petroleum-based chemicals and a variety of other damaging toxins in their bodies.

Environmental Toxins

www.fabian-bromann.de

Second, many toxins act directly on the gastrointestinal system, harming the colonies of good bacteria in the gut.

For instance, mercury, fluoride, and chlorine are all known to adversely affect the good bacteria in our gut.

The good bacteria are an essential part of our bodies’ detoxification process.

Friendly bacteria, for example, help to demethylate mercury (make it less harmful) in our bodies.

When environmental toxins assault these good bacteria, they are essentially compromising the immune system of their host, leaving them vulnerable to further toxic and infectious assaults.

Toxic exposure can result in significant immune dysregulation (often seen as autoimmunity), combined with cellular and tissue damage.

Some of the most common toxins include:

Since the time of the industrial revolution, progress has polluted our environment to the point that now not only our environment has been severely and tragically affected, but also our most precious legacy: our children.

Environmental toxicity has had a direct impact on the physical and neurological development of our children today.

It is, therefore, no surprise we have “canaries in the coal mine” and unheard of epidemics such as autism spectrum disorders, asthma, diabetes, allergies and so on which were rarely seen 50 years ago.

How Does Environmental Toxicity Affect Our Children?

It is a well-known fact that children experience a much stronger impact from environmental toxicity than adults.

The blood-brain barrier in a child is much porous than adults, and therefore, more vulnerable to having chemical exposures reaching the developing brain.

Children also have lower levels of some chemical binding proteins which allow more toxins to affect their organs.

Many children exposed to environmental toxicity at an early age and/or in utero may have their neurological, immune, sensory and nervous systems affected which now becomes a more complicated and complex process such as autism spectrum disorders.

Researchers now know that exposures to environmental contaminants are cumulative and may have generational effects still to come.

Lastly, but very importantly, is that many children carry a genetic variant defect called the MTHFR which results in reduced glutathione.

Glutathione is the master antioxidant in the body which aids the body in excreting toxicity to keep a healthy body, mind and spirit.

Children carrying the genetic mutation MTHFR would carry far greater risks to environmental toxicity than children without.

What Can We Do to Protect Our Children?

  • Green your home: buy organic produce, meats, fruits and free-range non GMO (genetically modified organism) without pesticides and growth hormones to feed your family.
  • Buy only wild fish, not farm raised; avoid fish with mercury and use pure fish oil without mercury as well.
  • Avoid all process and prepackaged foods and eliminate all artificial sweeteners, dyes, MSG, aspartame, toxic preservatives and eat freshly cooked or raw foods.
  • Store your food and beverages in glass rather than plastic and avoid plastic wrap and canned foods that have BPS and BPA.
  • Use a water filter for drinking water and even for your shower or bath.
  • Clean your home with natural cleaning products.
  • Buy natural brands of toiletries, shampoos, toothpaste, deodorants, cosmetics and soaps.
  • Avoid using artificial air fresheners, dryer sheets, fabric softeners, dish washer cleaners and synthetic fragrances – use essential oils instead.
  • Replace your non-stick and aluminum pots and pans and replace with glass, ceramic, and other natural cookware.
  • Use natural pesticide and insect repellents.
  • Reduce the usage of drugs and medication: choose natural supplements, homeopathy, herbs and essential oils for your children’s health and wellness.
  • Reduce the toxic electromagnetic smog in your house – shut off your WiFi.
  • Review our checklist for greening your home.
Sources & References

Adams, J.B., et al. Mercury in first-cut baby hair of children with autism versus typically-developing children. Toxicological & Environmental Chemistry. 2007 Jun;70(12):1046-51.

Adams, J.B., et al. Mercury, Lead, and Zinc in Baby Teeth of Children with Autism Versus Controls. Journal of Toxicology and Environmental Health. 2007 Jun;70(12):1046-51.

Aldad, T.S., et al. Fetal Radiofrequency Radiation Exposure From 800-1900 Mhz-Rated Cellular Telephones Affects Neurodevelopment and Behavior in Mice. Sci Rep. 2012;2:312.

Banks, W.A., et al. Aluminum-induced neurotoxicity: alterations in membrane function at the blood-brain barrier. Neurosci Biobehav Rev. 1989 Spring;13(1):47-53.

Braun, J.M., et al. Association of Environmental Toxicants and Conduct Disorder in U.S. Children: NHANES 2001-2004. Environ Health Perspect. 2008 Jul;116(7):956-62.

Braun, J.M., et al. Exposures to environmental toxicants and attention deficit hyperactivity disorder in U.S. children. Environ Health Project. Dec 2006;114(12):1904-1909.

Choi, A.L., et al. Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis. Environ Health Perspect. 2012;120(10).

Deisher, T.A., et al. Impact of environmental factors on the prevalence of autistic disorder after 1979. J Public Health and Epidemiology. Sep 2014;6(9):271-286.

Deth, R., et al. How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. Neurotoxicology. 2008;29(1):190-201.

Environmental Working Group. Body Burden: The Pollution in Newborns. 14 Jul 2005.

Geier, M.R., et al. The potential importance of steroids in the treatment of autistic spectrum disorders and other disorders involving mercury toxicity. Med Hypotheses. 2005;64(5):946-54.

Hanson, D.R., et al. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Medical Genetics. 2005 Feb 11;6:7.

Herbert, M.R., et al. Autism and environmental genomics. Neurotoxicology. 2006;27(5):671-84.

Herbert, M.R., et al. Autism and EMF? Plausibility of a pathophysiological link part I. Pathophysiology. 2013 Jul;1-19.

Herbert, M.R., et al. Autism and EMF? Plausibility of a pathophysiological link part II. Pathophysiology. 2013 Jun;20(3):211-34.

Hertz-Picciotto, I., et al. Organophosphate exposures during pregnancy and child neurodevelopment: Recommendations for essential policy reforms. PLoS Med. 2018 Oct 24;15(10):e1002671.

Hinhumpatch, P., et al. Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: application of salivary and urinary biomarkers. Toxicol Appl Pharmacol. 2013;273(3):569-79.

Holmes, A., et al. Reduced Levels of Mercury in First Baby Haircuts of Autistic Children. International Journal of Toxicology. Jul-Aug 2003;22(4):277-85.

Jafari, M.H., et al. The Relationship Between the Level of Copper, Lead, Mercury and Autism Disorders: A Meta-Analysis. Pediatric Health, Medicine and Therapeutics. 21 Sep 2020(11):369—378.

Jedrychowski, W., et al. COGNITIVE FUNCTION OF 6-YEAR OLD CHILDREN EXPOSED TO MOLD-CONTAMINATED HOMES IN EARLY POSTNATAL PERIOD. PROSPECTIVE BIRTH COHORT STUDY IN POLAND. Physiol Behav. 2011 Oct 24; 104(5): 989–995.

Jett, D.A. Chemical toxins that cause seizures. Neurotoxicology. 2012 Dec;33(6):1473-5.

Johansson, O., et al. Exacerbation of demyelinating syndrome after exposure to wireless modem with public hotspot. Electromagn Biol Med. 2016;35(4):393-7.

Kern, J.K., et al. A biomarker of mercury body-burden correlated with diagnostic domain specific clinical symptoms of autism spectrum disorder. Biometals. 2010;23(6):1043-51.

Lanphear, B.P., et al. Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect. 2005;113(7).

Lathe, R. Environmental factors and limbic vulnerability in childhood autism; Clinical report. American Journal of Biochemistry and Biotechnology. 4 (2): 183-197, 2008.

Napoli, E., et al. Toxicity of the flame-retardant BDE-49 on brain mitochondria and neuronal progenitor striatal cells enhanced by a PTEN-deficient background. Toxicol Sci. 2013 Mar;132(1):196-210.

Palmer, R.F., et al. Environmental mercury release, special education rates, and autism disorder: an ecological study of Texas. Health Place. 2006(12):203-209.

Palmer, R.F., et al. Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health and Place. 2009 Mar;15(1):18-24.

Rauh, V.A., et al. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics. 2006;118;e1845-1859.

Rowland, I.R., et al. Effects of diet on mercury metabolism and excretion in mice given methylmercury: role of gut flora. Archives of Environmental Health. Nov-Dec 1984;39(6):401-8.

Song, Y., et al. Effects of acute exposure to aluminum on blood-brain barrier and the protection of zinc. Neurosci Lett. 2008 Nov 7;445(1):42-6.

Tang, J., et al. Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Res. 2015 Mar 19;1601:92-101.

Thompson, L., et al. What have birth cohort studies asked about genetic, pre- and perinatal exposures and child and adolescent onset mental health outcomes? A systematic review. Eur Child Adolesc Psychiatry. 2010;19(1):1-15.

U.S. Food and Drug Administration. FDA Issues Recommendations for Certain High-Risk Groups Regarding Mercury-Containing Dental Amalgam. 24 Sep 2020.

Wallinga, D., et al. Not So Sweet: Missing Mercury and High Fructose Corn Syrup. Institute for Agriculture and Trade Policy, Minneapolis, Minnesota. Jan 2009.

Wang, H.L., et al. Case-Control Study of Blood Lead Levels and Attention Deficit Hyperactivity Disorder in Chinese Children. Environmental Health Perspectives. 2008 Oct;116(10):1401-6.

Windham, G.C., et al. Autism Spectrum Disorders in Relation to Distribution of Hazardous Air Pollutants in the San Francisco Bay Area. Environmental Health Perspectives. 2006 Sep;114(9):1438-44.