What Is Autism Spectrum Disorder?

Autism Spectrum DisorderAutism spectrum disorder is a developmental disorder characterized by impairments in sensory, language, social-emotional and behavior areas.

It is a “spectrum disorder,” with manifestations ranging from mild to severe.

What Your Doctor May Tell You About Autism

Traditional practitioners believe that autism is a mystery.

They may say that, “We have little knowledge of possible causes, and that treatments should address impairments in the processing of touch, movement, audition and vision, speech, language, and behavior.

Accompanying physical issues such as allergies, breathing problems, gastrointestinal issues, and others are unrelated to the diagnosis.”

Another Way to Think About Autism

Autism spectrum disorder is a multi-system developmental disorder caused by an accumulation of environmental stressors turning on a genetically susceptible predisposition to the condition.

Just like a bridge that collapses when a heavily laden truck crosses it, the body collapses into autism as the multiple triggers add up.

Depending upon the triggers, different systems are affected in each individual, related to his/her bioindividuality.

Autism can be related to:

The good news is that recovery is possible from autism by rebalancing the body and bringing it back to health.

This requires removing the possible triggers from the external and internal environment, and adding necessary nutrients through food and supplementation.

Autism, ADD/ADHD and SPD Comorbidities

Knowledgeable practitioners have found that roughly 30-50% of children with autism, ADD/ADHD and Sensory Processing Disorder (SPD) also have PANS PANDAS.

These are newer diagnoses that your child’s pediatrician or psychiatrist may not be aware of.

They are disorders that are loosely defined as a sudden onset of acute anxiety and mood variability accompanied by OCD (Obsessive  Compulsive Disorder) and/or tics.

PANDAS stands for Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections. With PANDAS, the onset of symptoms is typically preceded by streptococcal -A infection (“strep throat”). However, in some cases, children may not have presented with a full-blown, acute strep throat infection.

PANDAS is included in the larger umbrella of PANS, Pediatric Acute-onset Neuropsychiatric Syndrome. PANS includes not only PANDAS, but also diagnoses such as Lyme disease, OCD and ODD.

In addition, it is very common for younger siblings of children diagnosed with autism, ADD/ADHD or Sensory Processing Disorder to be diagnosed themselves with PANS and PANDAS.

If this is the case, consider that your older child may have PANS PANDAS as well.

In many cases, these children have both a PANDAS diagnosis as well as that of Lyme disease.

Autoimmune Encephalitis

Another way to think of PANS PANDAS, as well as any neurodevelopmental disorder such as autism, ADD/ADHD, Sensory Processing Disorder and even learning disabilities, is that these disorders may fall under the larger umbrella of autoimmune encephalitis (AE).

Autoimmune encephalitis is a disorder in which the immune system attacks the brain, impairing function.

Encephalitis is inflammation and swelling of the brain, often due to infection, which in many of these cases causes an autoimmune attack on the microglia cells of the brain.

A child with this type of damage may typically never have or may lose motor skills and/or the ability to speak, similar to an adult who has had a stroke.

Encephalitis is a common symptom of this type of damage, and it often shows up as an increase in the child’s head-circumference percentile, especially in the first year of life.

The prestigious science journal Nature pointed this out by stating that “brain volume overgrowth was linked to the emergence and severity of autistic social deficits.”

Anti-NDMA Receptor Encephalitis

The N-methyl-D-aspartate receptor (also known as the NMDA receptor), is a glutamate receptor found in nerve cells.

It is activated when the amino acids glutamate and glycine bind to it.

NMDA receptors have been implicated by a number of studies to be strongly involved with excitotoxicity, the process by which nerve cells are damaged or killed by excessive stimulation by neurotransmitters such as glutamate.

Excitoxicity can cause encephalopathy and seizures.

Glutamate and its analogs are found in processed foods not only as MSG (monosodium glutatmate), but also in chemical food additives such as:

  • Hydrolyzed vegetable protein
  • Soy protein isolate
  • Yeast extract
  • Gelatin
  • Barley malt
  • Bouillon
  • Natural flavoring
  • Artificial flavoring
  • Soy sauce

Even natural foods such as tomatoes, bone broth and seaweed may naturally have high levels of glutamate.

Strep also increases glutamate in the brain.

Autism Checklist to Start

Consider lifestyle contribution:

  • Is your child getting 10 hours of sleep per night (or more if your child is under 10)?
  • An hour of exercise or movement per day?
  • Drinking half his body weight in ounces of water?

Make dietary changes:

Is your child craving and eating primarily a refined carbohydrate, high sugar, trans-fatty acids and fast food diet?

Eliminate all processed foods, and eat a whole foods diet.

Gluten- and dairy-containing foods are commonly known to produce an inability to focus when eaten.

  • Eat whole foods
  • Buy organic foods
  • Remove all GMO foods
  • Remove all fast and processed foods
  • Remove all foods with:
    • Artificial colors
    • Artificial ingredients
    • Preservatives
    • Phenols
    • Salicylates
  • Remove potentially inflammatory foods such as
    • Casein
    • Gluten
    • Soy
    • Corn
    • Eggs
  • Strictly limit:
    • Sugars
    • Refined salt
    • Refined carbohydrates
  • Join the Feingold Association www.Feingold.org to learn more.

Include plenty of good quality fats, such as:

  • Coconut oil
  • Olive oil
  • Avocados
  • Wild salmon
  • Organic chicken
  • Organic turkey
  • Grass-fed ghee
  • Pasture-raised eggs
  • Grass-fed beef
  • Essential fatty acids from:
    • Cod liver oil
    • Hemp seeds
    • Flax seeds
    • Evening primrose oil
    • Borage oil
    • Walnut oil

Remove vegetable oils such as:

  • Canola
  • Corn
  • Soy
  • Safflower
  • Sunflower

Include plenty of high-quality proteins with every meal, such as:

  • Pasture-raised eggs and chicken
  • Grass-fed beef
  • Wild-caught fish
  • Legumes
  • Nuts

Heal the gut with special diets such as:

Learn more about healing diets and foods.

Use digestive aids with your practitioner’s guidance:

  • Betaine hydrochloric acid
  • Digestive enzymes with DPP-IV for gluten and casein intolerances
  • Proteolytic enzymes
  • BiCarb
  • Bromelain
  • Papaya

Clean up your environment:

Have you identified and removed possible environmental triggers, such as mold, dust, pet dander, and electromagnetic fields (EMFs)?

Have you identified and removed possible toxic exposures in the home from purchased products, such as detergents, soaps, lotions, and other cleaning and personal care products?

  • Remove animals (both live and stuffed!)
  • Remove carpets
  • Use non-toxic cleaners
  • Use non-toxic building materials
  • Green your home

Ask your pediatrician to run some laboratory tests for:

  • Possible food sensitivities and allergies
    • Enzyme-Linked Immunosorbent Assay (ELISA) IgG, IgA, IgE and IgM
  • Nutritional deficiencies in vitamins and minerals. The NutrEval by Genova Diagnostics Labs covers the following areas:
    • Malabsorption
    • Dysbiosis
    • Cellular energy
    • Mitochondrial metabolism
    • Neurotransmitter metabolism
    • Vitamin deficiencies
    • Toxin exposure
    • Detoxification need
  • Bacterial and yeast overgrowth
  • Gluten and casein sensitivities
  • Organic acids: The organic acid test by Great Plains Laboratory for yeast overgrowth and Candida, oxalates, and other microbial infections

Add fermented foods and probiotics daily:

These will keep the gastrointestinal system and microbiome healthy and strong which in turn will keep the immune system strong.

  • Eat kefir yogurts
  • Eat fermented vegetables
  • Eat umeboshi plums (very alkalizing)
  • Eat miso soup, if soy is tolerated

Some good probiotics are:

  • VSL#3
  • Gut Pro
  • Dr. Ohirra’s Live Cultured Probiotics
  • Garden of Life
  • Culturelle
  • Klaire Labs

Use herbs, essential oils and natural supplements with your practitioner’s guidance:

  • Cod liver oil
  • Vitamin C
  • Vitamin D3
  • B complex vitamins especially pantothenic acid (B5)
  • Magnesium
  • Rescue Remedy
  • GABA, especially PharmaGABA
  • N-acetylcysteine (NAC): prevents upper respiratory infections for those prone to chronic infections
  • MSM transdermal cream
  • Epsom salts bath

Help your child detoxify:

  • Ionic foot baths can help detox unwanted pathogens and are easy to do with children
  • Infared saunas can detox heavy metals through the skin by sweating. However, this form of detoxification may not be suitable for young children who lack the ability to sweat.

Learn about retained primitive reflexes:

Most, if not all, children with neurodevelopmental disorders including learning disabilities, have retained primitive reflexes.

Find a therapist that is trained in integrating primitive reflexes, which can cause imbalances in the way your child’s brain performs.

See a chiropractic neurologist at a Brain Balance Center:

The Brain Balance program can help balance the right and left brain hemispheres and make neural connections to extinguish primitive reflexes.

See a neurofeedback practitioner:

Neurofeedback is approved as a level-one intervention by the American Academy of Pediatrics for ADD and ADHD, which are learning disabilities.

Even if your child doesn’t have ADD or ADHD, they may still benefit from neurofeedback.

Find a practitioner that can perform a QEEG (quantitative electroencephalograph) brain map first so you can understand how your child’s brain works.

See a sensory-integration occupational therapist (OT):

These OTs address a variety of sensory issues with a child using hands-on equipment. This type of therapy calms down the nervous system to help integrate the senses and retained reflexes.

See a chiropractor:

A chiropractor can perform spinal cord adjustments, which can improve communication in the nervous system.

See a craniosacral practitioner:

Craniosacral therapy can reestablish central nervous system functioning. These practitioners use approaches rich in vestibular, proprioceptive and tactile input and may also do oral motor therapy.

See a behavioral/developmental optometrist:

A developmental optometrist can check for convergence and tracking problems with your child’s vision. He or she can correct these issues with vision therapy, lens and prisms. Doing so can improve hand-eye coordination and school performance.

See an auditory therapist:

Many children with learning disabilities have auditory processing problems that may be causing problems with focus and concentration. An auditory therapist can devise a listening program that is specific to your child’s needs.

Auditory Integration Therapy (Berard) or Sound Stimulation (Tomatis) can retrain the brain, calm down the nervous system, reduce sound sensitivities.

Find a therapist doing Brain Gym:

A Brain Gym practitioner can have your child do exercises for sensorimotor coordination, self-calming and self-management.

See a homeopath or naturopath:

These practitioners can diagnose and treat gastrointestinal disorders naturally so that the child’s immune, sensory, neurological and nervous systems develop without being compromised.

See a well-trained acupuncturist:

Acpuncture can help lower stress and anxiety associated with sensory processing.

See a NAET or BioSET practitioner:

Children with Sensory Processing Disorder typically also have food allergies and/or food sensitivities and intolerances. NAET (Namudripad’s Allergy Elimination Technique) and BioSET are two non-invasive methods of allergy elimination.

Sensory therapies and tools:

  • Super brain yoga
  • Rock climbing
  • Gymnastics
  • Weighted vests, blanket and belts
  • HANDLE therapy
  • Sensory Learning
  • Tool Chest
  • Squeeze Machine
  • Music therapy
  • Sensory gym
  • Deep pressure brushing therapy
  • Sensory tactile toys

Still Looking for Answers?

  • Have your child screened for services from the local public school, even if your child does not attend. The law mandates that you are entitled to free services from birth.
  • Ask your doctor to run basic blood, urine, and stool tests for baselines on function. Be sure and include a test for vitamin D, which is not routine.
  • Take all processed foods out of your child’s diet. Consider removing all sugars, flours (especially wheat), and dairy products, as well.
  • Look into diets and therapies that heal the gut and restore microbial balance and diversity in your child’s gastrointestinal system
  • Seek out a local support group for families of children with special needs.

Visit the Epidemic Answers Provider Directory to find a practitioner near you.

Related Pages

Alexa and Sergio: Lyme and Autism

Almost Autism with Maria Rickert Hong

Anthony: Autism and Apraxia

Autism Causes

Autism, Environment, Subtypes and Remission with Norm Schwartz MD

The Autism Exchange

Autism Play

Autism Prevention – Early Choices

Autism and Vision

AutoImmunity and Autism

Before Autism, After Autism

Biomedical Testing for Autism, ADHD, SPD and Chronic Disorders

Birth Trauma: A Common Cause of Developmental Delays

“The Diet” (Gluten-Free Casein-Free Diet)

Diet Basics

DIR Floortime for Children with Autism

Ear Infections and Autism

Educational Kinesiology, Brain Gym, Autism and Other Challenges

Ella: Almost Autism

Essential Nutrients

Exploring the Gluten Free Casein Free Diet

Fat and Brain Development

The Fish Isn’t Sick, The Water’s Dirty: Autism and Environmental Toxins

Food Sensitivities and Intolerances

Glutathione and Autism

Gluten-Free, Casein-Free Diet

Healing Diets and Foods

A Healthy Diet for Autism, ADHD, Allergies, Asthma and More

Homeopathy and Autism, ADHD and Other Developmental Delays

How Do I Know If an Autism Treatment Helps?

How Not to Have a Child with Autism

IgG Allergies in Autism, ADHD, Asthma, Autoimmune and More

The Importance of Retained Reflexes in Developmental Delays

Improving Cognitive Function Through Supplementation

Johnny and Nate: Autism

The Leaky Gut and Autism, ADHD and Other Developmental Delays

Leo: Autism

Light Sensitivity and Autism, ADHD, SPD and Developmental Delays

Magnesium: The Super-Mineral

Metallothionein and Autism Update

Mia: Autism

Mitochondrial Dysfunction and Autism

Mitochondrial Dysfunction and Autism with Dr. Suzanne Goh

NAET for ADHD and Autism

A New Model Offering Hope for Autism Recovery

The New Normal: 1 in 68 Children with Autism

Noah: Autism and Mold Toxicity

Nourishing Hope for Autism, ADHD, Aspergers and Allergies with Julie Matthews

Nutrition and Autism

Nutrition and Autism, ADHD, SPD and Other Developmental Delays

Nutrition 101

Nutritional Supplementation and Autism, ADHD, SPD and Other Delays

Nutrient Therapy for Autism

Oral Motor Sensory Therapy and Autism

Outsmarting Autism with Patty Lemer

PANS PANDAS

PANS/PANDAS with Lauren Stone (webinar replay)

Pediatric Chiropractic for Autism, ADHD, Sensory Processing Disorder and Developmental Delays

The Picky Eaters

Prioritizing Interventions for Autism, PDD-NOS, SPD and ADHD

Pycnogenol and Autism, ADHD, SPD and Other Developmental Delays

Retained Reflexes

Sensory Diet

Sensory Processing Disorder

Sleep Strategies for Autism, ADHD, SPD and Other Developmental Delays

SPD, ADHD and Autism Calming Strategies

Stephanie Seneff, PhD: Roundup, GMOs, Autism, ADHD and Autoimmune Disorders

The Straight Scoop on the Gluten-Free, Casein-Free Diet

Three Myths about Healing Diets for ADHD, Autism and Anxiety

Thyroid Dysfunction and Autism, ADHD, SPD and Other Developmental Delays

Total Load Theory

Undiagnosed Lyme Disease

Vision Therapy for Autism, ADHD, SPD and Learning Disabilities

Vitamin A Autism Treatment Spurs Breakthrough for Child

Vitamin D Deficiency

What Is Good Food?

What Is the Difference Between Autism and ADHD or Other Developmental Delays?

Why Diet Matters

References

Adams, J.B., Audhya, T., McDonough-Means, S., Rubin, R.A., Quig, D., Geis, E., et al. Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatr. 2011;11:111

Adams, J.B., et al. Comprehensive Nutritional and Dietary Intervention for Autism Spectrum Disorder-A Randomized, Controlled 12-Month Trial. Nutrients. 2018 Mar 17;10(3).

Adams, J.B., et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab (Lond) 2011 Jun 8;8(1):34.

Alabdali, A., Al-Ayadhi, L., El-Ansary, A. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behav Brain Funct. 2014;10:14

Alabdali, A., Al-Ayadhi, L., El-Ansary, A. Association of social and cognitive impairment and biomarkers in autism spectrum disorders. J Neuroinflammation. 2014;11:4

Ashraghi, R.S., et al. Early Disruption of the Microbiome Leading to Decreased Antioxidant Capacity and Epigenetic Changes: Implications for the Rise in Autism. Front. Cell. Neurosci., 15 Aug 2018.

Barrett, B. Substantial lifelong cost of autism spectrum disorder. J Pediatr. 2014;165(5):1068-9

Bateman, C. Autism–mitigating a global epidemic. S Afr Med J. 2013;103(5):276-7

Bitsika, V., Sharpley, C.F., Andronicos, N.M., Agnew, L.L. Hypothalamus-pituitary-adrenal axis daily fluctuation, anxiety and age interact to predict cortisol concentrations in boys with an autism spectrum disorder. Physiol Behav. 2015;138:200-7

Blaylock, R.L. A possible central mechanism in autism spectrum disorders, part 1. Altern Ther Health Med. 2008 Nov-Dec;14(6):46-53.

Blaylock, R.L. A possible central mechanism in autism spectrum disorders, part 2: immunoexcitotoxicity. Altern Ther Health Med. 2009 Jan-Feb;15(1):60-7.

Blaylock, R.L. A possible central mechanism in autism spectrum disorders, part 3: the role of excitotoxin food additives and the synergistic effects of other environmental toxins. Altern Ther Health Med. 2009 Mar-Apr;15(2):56-60.

Blaylock, R.L., et al. Immune-glutamatergic dysfunction as a central mechanism of the autism spectrum disorders. Curr Med Chem. 2009;16(2):157-70.

Bouder, J.N., Spielman, S., Mandell, D.S. Brief report: Quantifying the impact of autism coverage on private insurance premiums. J Autism Dev Disord. 2009;39(6):953-7

Bradstreet, J.J., Smith, S., Baral M., Rossignol, D.A. Biomarker-guided interventions of clinically relevant conditions associated with autism spectrum disorders and attention deficit hyperactivity disorder. Altern Med Rev. 2010;15(1):15-32

Brown, C.M., Austin, D.W., Busija, L. Observable essential fatty acid deficiency markers and autism spectrum disorder. Breastfeed Rev. 2014;22(2):21-6

Buescher, A.V., Cidav, Z., Knapp, M., Mandell, D.S. Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatr. 2014;168(8):721-8

Bull, G., Shattock, P., Whiteley, P., Anderson, R., Groundwater, P.W., Lough, J.W., et al. Indolyl-3-acryloylglycine (IAG) is a putative diagnostic urinary marker for autism spectrum disorders. Med Sci Monit. 2003;9(10):CR422-5

Critchfield, J.W., van Hemert, S., Ash, M., Mulder, L., Ashwood, P. The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract. 2011;2011:161358

Cubala-Kucharska M. The review of most frequently occurring medical disorders related to aetiology of autism and the methods of treatment. Acta Neurobiol Exp (Wars). 2010;70(2):141-6

Darling, A.L., et al. Association between maternal vitamin D status in pregnancy and neurodevelopmental outcomes in childhood: results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Br J Nutr 2017 Jun;117(12):1682-1692.

Dave, D., Fernandez, J.M., National Bureau of Economic Research. The effect of an increase in autism prevalence on the demand for auxiliary healthcare workers : evidence from California. Cambridge, MA: National Bureau of Economic Research; 2012. 37 p.p.

de Magistris, L., Familiari, V., Pascotto, A., Sapone, A., Frolli, A., Iardino, P., et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr. 2010;51(4):418-24

Deth, R., Muratore, C., Benzecry, J., Power-Charnitsky, V.A., Waly, M. How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. Neurotoxicology. 2008;29(1):190-201

Elamin, N.E., Al-Ayadhi, L.Y. Brain autoantibodies in autism spectrum disorder. Biomark Med. 2014;8(3):345-52

El-Ansary, A., Al-Ayadhi, L. Neuroinflammation in autism spectrum disorders. J Neuroinflammation. 2012;9:265.

El-Ansary, A., Al-Ayadhi, L. Lipid mediators in plasma of autism spectrum disorders. Lipids Health Dis. 2012;11:160.

Faber, S., Zinn, G.M., Boggess, A, Fahrenholz, T., Kern, J.C. 2nd, Kingston, H.M. A cleanroom sleeping environment’s impact on markers of oxidative stress, immune dysregulation, and behavior in children with autism spectrum disorders. BMC Complement Altern Med. 2015;15:71

Frustaci, A., Neri, M., Cesario, A., Adams, J.B., Domenici, E., Dalla Bernardina, B., et al. Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med. 2012;52(10):2128-41

Frye, R.E., Delatorre, R., Taylor, H., Slattery, J., Melnyk, S., Chowdhury, N., et al. Redox metabolism abnormalities in autistic children associated with mitochondrial disease. Transl Psychiatry. 2013;3:e273

Frye, R.E., James, S.J. Metabolic pathology of autism in relation to redox metabolism. Biomark Med. 2014;8(3):321-30

Gabriele, S., Sacco, R., Persico, A.M. Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur Neuropsychopharmacol. 2014;24(6):919-29

Gadow, K.D., Roohi, J., DeVincent, C.J., Kirsch, S., Hatchwell, E. Association of COMT (Val158Met) and BDNF (Val66Met) gene polymorphisms with anxiety, ADHD and tics in children with autism spectrum disorder. J Autism Dev Disord. 2009;39(11):1542-51

Gadow, K.D., Devincent, C.J., Olvet, D.M., Pisarevskaya, V., Hatchwell, E. Association of DRD4 polymorphism with severity of oppositional defiant disorder, separation anxiety disorder and repetitive behaviors in children with autism spectrum disorder. Eur J Neurosci. 2010;32(6):1058-65

Gebril, O.H., Meguid, N.A. HFE gene polymorphisms and the risk for autism in Egyptian children and impact on the effect of oxidative stress. Dis Markers. 2011;31(5):289-94

Geier, D.A., Kern, J.K., Geier, M.R. The biological basis of autism spectrum disorders: Understanding causation and treatment by clinical geneticists. Acta Neurobiol Exp (Wars). 2010;70(2):209-26

Ghanizadeh, A. Increased glutamate and homocysteine and decreased glutamine levels in autism: a review and strategies for future studies of amino acids in autism. Dis Markers. 2013;35(5):281-6

Goldani, A.A., Downs, S.R., Widjaja, F., Lawton, B., Hendren, R.L. Biomarkers in autism. Front Psychiatry. 2014;5:100

Guyol, G. Who’s crazy here?: Steps for recovery without drugs for: ADD/ADHD, addiction & eating disorders, anxiety & PTSD, depression, bipolar disorder, schizophrenia, autism. 1st U.S. ed. Stonington, CT: Ajoite Pub.; 2010. 123 p.p.

Herbert, M.R., Russo, J.P., Yang, S., Roohi, J., Blaxill, M., Kahler, S.G., et al. Autism and environmental genomics. Neurotoxicology. 2006;27(5):671-84

Hertz-Picciotto, I., et al. Organophosphate exposures during pregnancy and child neurodevelopment: Recommendations for essential policy reforms. PLoS Med. 2018 Oct 24;15(10):e1002671

Heyer, N.J., Echeverria, D., Woods, J.S. Disordered porphyrin metabolism: a potential biological marker for autism risk assessment. Autism Res. 2012;5(2):84-92

Howsmon, D. P., Vargason, T. , Rubin, R. A., Delhey, L. , Tippett, M. , Rose, S. , Bennuri, S. C., Slattery, J. C., Melnyk, S. , James, S. J., Frye, R. E. and Hahn, J. (2018), Multivariate techniques enable a biochemical classification of children with autism spectrum disorder versus typically‐developing peers: A comparison and validation study. Bioengineering & Translational Medicine. . doi:10.1002/btm2.10095

Ivanovski, I., et al. Aluminum in brain tissue in autism. J Trace Elem Med Biol. 2019 Jan;51:138-140.

James, S.J., Cutler, P., Melnyk, S., Jernigan, S., Janak, L., Gaylor, D.W., et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004;80(6):1611-7

Jyonouchi, H., Geng, L., Ruby, A., Zimmerman-Bier, B. Dysregulated innate immune responses in young children with autism spectrum disorders: their relationship to gastrointestinal symptoms and dietary intervention. Neuropsychobiology. 2005;51(2):77-85

Kaluzna-Czaplinska, J., Zurawicz, E., Struck, W., Markuszewski, M. Identification of organic acids as potential biomarkers in the urine of autistic children using gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;966:70-6

Kern, J.K., Geier, D.A., Adams, J.B., Geier, M.R. A biomarker of mercury body-burden correlated with diagnostic domain specific clinical symptoms of autism spectrum disorder. Biometals. 2010;23(6):1043-51

Khan, Z., et al. Slow CCL2-dependent translocation of biopersistent particles from muscle to brain. BMC Med. 2013 Apr 4;11:99.

Kuwabara, H., Yamasue, H., Koike, S., Inoue, H., Kawakubo, Y., Kuroda, M., et al. Altered metabolites in the plasma of autism spectrum disorder: a capillary electrophoresis time-of-flight mass spectroscopy study. PLoS One. 2013;8(9):e73814

Lavelle, T.A., Weinstein, M.C., Newhouse, J.P., Munir, K., Kuhlthau, K.A., Prosser, L.A. Economic burden of childhood autism spectrum disorders. Pediatrics. 2014;133(3):e520-9

Li, S.O., Wang, J.L., Bjorklund, G., Zhao, W.N., Yin, C.H. Serum copper and zinc levels in individuals with autism spectrum disorders. Neuroreport. 2014;25(15):1216-20

Maher, P. Methylglyoxal, advanced glycation end products and autism: is there a connection? Med Hypotheses. 2012;78(4):548-52

Momeni, N., Bergquist, J., Brudin, L., Behnia, F., Sivberg, B., Joghataei, M.T., et al. A novel bloodbased biomarker for detection of autism spectrum disorders. Transl Psychiatry. 2012;2:e91

Nankova ,B.B., Agarwal, R., MacFabe, D.F., La Gamma, E.F. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells–possible relevance to autism spectrum disorders. PLoS One. 2014;9(8):e103740

Ngounou Wetie, A.G., Wormwood, K., Thome, J., Dudley, E., Taurines, R., Gerlach, M., et al. A pilot proteomic study of protein markers in autism spectrum disorder. Electrophoresis. 2014;35(14):2046-54

Noto, A., Fanos, V., Barberini, L., Grapov, D., Fattuoni, C., Zaffanello, M., et al. The urinary metabolomics profile of an Italian autistic children population and their unaffected siblings. J Matern Fetal Neonatal Med. 2014;27 Suppl 2:46-52

Ozonoff, S., et al. Onset patterns in autism: Variation across informants, methods, and timing. Autism Res. 2018 Mar 10.

Patrick, R.P., Ames, B.N. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J. 2014;28(6):2398-413

Peterson, B.S., Goh, S., Dong, Z. Brain lactate as a potential biomarker for comorbid anxiety disorder in autism spectrum disorder-reply. JAMA Psychiatry. 2015;72(2):190-1

Ranjbar, A., Rashedi, V., Rezaei, M. Comparison of urinary oxidative biomarkers in Iranian children with autism. Res Dev Disabil. 2014;35(11):2751-5

Ratajczak, H.V. Theoretical aspects of autism: biomarkers–a review. J Immunotoxicol. 2011;8(1):80-94

Reynolds, A., Krebs, N.F., Stewart, P.A., Austin, H., Johnson, S.L., Withrow, N., et al. Iron status in children with autism spectrum disorder. Pediatrics. 2012;130 Suppl 2:S154-9

Rutter, M. Changing concepts and findings on autism. J Autism Dev Disord. 2013;43(8):1749-57

Ruggeri, B., Sarkans, U., Schumann, G., Persico, A.M. Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology (Berl). 2014;231(6):1201-16

Spilioti, M., Evangeliou, A.E., Tramma, D., Theodoridou, Z., Metaxas, S., Michailidi, E., et al. Evidence for treatable inborn errors of metabolism in a cohort of 187 Greek patients with autism spectrum disorder (ASD). Front Hum Neurosci. 2013;7:858

Strunecka, A., et al. Immunoexcitotoxicity as the central mechanism of etiopathology and treatment of autism spectrum disorders: A possible role of fluoride and aluminum. Surg Neurol Int. 2018 Apr 9;9:74.

Theoharides, T.C. Is a subtype of autism an allergy of the brain? Clin Ther. 2013; 35(5):584-91

Thomas, R.H., Meeking, M.M., Mepham, J.R., Tichenoff, L., Possmayer, F., Liu, S., et al. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders. J Neuroinflammation. 2012;9:153

Vuillermot, S., et al. “Vitamin D treatment during pregnancy prevents autism-related phenotypes in a mouse model of maternal immune activation.Mol Autism. 2017 Mar 7;8:9.

Wang, L., Conlon, M.A., Christophersen, C.T., Sorich, M.J., Angley, M.T. Gastrointestinal microbiota and metabolite biomarkers in children with autism spectrum disorders. Biomark Med. 2014;8(3):331-44

Woodman, A.C., Smith, L.E., Greenberg, J.S., Mailick, M.R. Change in autism symptoms and maladaptive behaviors in adolescence and adulthood: the role of positive family processes. J Autism Dev Disord. 2015;45(1):111-26

Wu, D.M., et al. “Relationship Between Neonatal Vitamin D at Birth and Risk of Autism Spectrum Disorders: the NBSIB Study.J Bone Miner Res. 2018 Mar;33(3):458-466.

Books

Bock, Kenneth. Healing the New Childhood Epidemics: Autism, ADHD, Asthma, and Allergies: The Groundbreaking Program for the 4-A Disorders. New York, NY. Ballantine Books, 2008.

Brandes, Bonnie. The Symphony of Reflexes: Interventions for Human Development, Autism, ADHD, CP, and Other Neurological Disorders, 2016.

Campbell-McBride, Natasha. Gut and Psychology Syndrome: Natural Treatment for Autism, Dyspraxia, A.D.D., Dyslexia, A.D.H.D., Depression, Schizophrenia, 2010.

Giustra-Kozek, Jennifer. Healing without hurting: treating ADHD, apraxia, and autism spectrum disorders naturally and effectively without harmful medication. Howard Beach, NY: Changing Lives Press, 2014.

Herbert, Martha, Weintraub Karen. The Autism Revolution: Whole-Body Strategies for Making Life All It Can Be. New York: Ballantine Books; 2012.

Hong, Maria Rickert. “Almost Autism: Recovering Children from Sensory Processing Disorder, A Reference for Parents and Practitioners.” 2014.

Kaufman, Raun K. Autism breakthrough: the groundbreaking method that has helped families all over the world. First edition. ed. New York: St. Martin’s Press; 2014. x, 353 p.p.

Lambert, Beth, et al. Brain Under Attack: A Resource for Parents and Caregivers of Children with PANS, PANDAS, and Autoimmune Encephalitis. Answers Publications, 2018.

Lemer, Patricia S. Outsmarting Autism: The Ultimate Guide to Management, Healing and Prevention for Individuals with Autism Spectrum Disorders. Tarentum, PA, Word Association Publishers, 2014.

Romaniec, Mary. Victory Over Autism: Lessons on Raising an Autism-Free Child. New York, NY: Skyhorse Publishing, 2015.

Sears, Robert W. The Autism Book: What Every Parent Needs to Know about Early Detection, Treatment, Recovery, and Prevention. 1st ed. New York, NY: Little, Brown, 2010.

Seroussi, Karyn. Unraveling the Mystery of Autism and Pervasive Developmental Disorder: A Mother’s Story of Research and Recovery. New York: Simon & Schuster, 2000.