Autism Spectrum Disorder

What Is Autism Spectrum Disorder?

Autism spectrum disorder is a developmental disorder characterized by impairments in sensory, language, social, emotional and behavior areas. It is a “spectrum disorder,” with manifestations ranging from mild to severe.

What Your Doctor May Tell You About Autism

Traditional practitioners believe that autism is a mystery. They may say that, “We have little knowledge of possible causes, and that treatments should address impairments in the processing of touch, movement, audition and vision, speech, language, and behavior. Accompanying physical issues such as allergies, breathing problems, gastrointestinal issues, and others are unrelated to the diagnosis.”

Another Way to Think About Autism

Autism spectrum disorder is a multi-system developmental disorder caused by an accumulation of environmental stressors turning on a genetically susceptible predisposition to the condition. Just like a bridge that collapses when a heavily laden truck crosses it, the body collapses into autism as the multiple triggers add up. Depending upon the triggers, different systems are affected in each individual, related to his/her bioindividuality.

Autism can be related to:

The good news is that you can heal the symptoms of autism by rebalancing the body and bringing it back to health. This requires removing the possible triggers from the external and internal environment, and adding necessary nutrients through food and supplementation.

Autism, ADD/ADHD and SPD Comorbidities

Knowledgeable practitioners have found that roughly 30-50% of children with autism, ADD/ADHD and Sensory Processing Disorder (SPD) also have PANS PANDAS. These are newer diagnoses that your child’s pediatrician or psychiatrist may not be aware of. They are disorders that are loosely defined as a sudden onset of acute anxiety and mood variability accompanied by OCD (Obsessive  Compulsive Disorder) and/or tics.

PANDAS stands for Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections. With PANDAS, the onset of symptoms is typically preceded by streptococcal -A infection (“strep throat”). However, in some cases, children may not have presented with a full-blown, acute strep throat infection.

PANDAS is included in the larger umbrella of PANS, Pediatric Acute-onset Neuropsychiatric Syndrome. PANS includes not only PANDAS, but also diagnoses such as Lyme disease, OCD and ODD. In addition, it is very common for younger siblings of children diagnosed with autism, ADD/ADHD or Sensory Processing Disorder to be diagnosed themselves with PANS and PANDAS.

If this is the case, consider that your older child may have PANS PANDAS as well. In many cases, these children have both a PANDAS diagnosis as well as that of Lyme disease.

Autoimmune Encephalitis

Another way to think of PANS PANDAS, as well as any neurodevelopmental disorder such as autism, ADD/ADHD, Sensory Processing Disorder and even learning disabilities, is that these disorders may fall under the larger umbrella of autoimmune encephalitis (AE). This is a disorder in which the immune system attacks the brain, impairing function.

Encephalitis is inflammation and swelling of the brain, often due to infection, which in many of these cases causes an autoimmune attack on the microglia cells of the brain. A child with this type of damage may typically never have or may lose motor skills and/or the ability to speak, similar to an adult who has had a stroke.

Encephalitis is a common symptom of this type of damage, and it often shows up as an increase in the child’s head-circumference percentile, especially in the first year of life. The prestigious science journal Nature pointed this out by stating that “brain volume overgrowth was linked to the emergence and severity of autistic social deficits.”

Anti-NDMA Receptor Encephalitis

The N-methyl-D-aspartate receptor (also known as the NMDA receptor), is a glutamate receptor found in nerve cells.  It is activated when the amino acids glutamate and glycine bind to it. NMDA receptors have been implicated by a number of studies to be strongly involved with excitotoxicity, the process by which nerve cells are damaged or killed by excessive stimulation by neurotransmitters such as glutamate. Excitoxicity can cause encephalopathy and seizures.

Glutamate and its analogs are found in processed foods not only as MSG (monosodium glutatmate), but also in chemical food additives such as:

  • Hydrolyzed vegetable protein
  • Soy protein isolate
  • Yeast extract
  • Gelatin
  • Barley malt
  • Bouillon
  • Natural flavoring
  • Artificial flavoring
  • Soy sauce

Even natural foods such as tomatoes, bone broth and seaweed may naturally have high levels of glutamate. Strep also increases glutamate in the brain.

Autism Healing Checklist

  • Have your child screened for services from the local public school, even if your child does not attend. The law mandates that you are entitled to free services from birth.
  • Seek out a local support group for families of children with special needs.

Make Lifestyle Changes

  • Get 10 hours of sleep per night (or more if your child is under 10)
  • Get outside every day
  • Get an hour of exercise or movement per day
  • Sync circadian rhythm by getting up when the sun does and going to bed after it sets
  • Limit screen time as much as possible
  • Use blue-blocking lightbulbs and glasses at night, especially when looking at screens
  • Put bare feet in wet ground when possible
  • Drink half body weight in ounces of water

Eat a Clean Diet

Use Only High-Quality Fats

  • Coconut oil
  • Olive oil (unheated)
  • Avocados
  • Medium-Chain Triglycerides (MCT) oil
  • Grass-fed ghee
  • Duck fat
  • Grass-fed beef tallow
  • Cod liver oil (unheated)
  • Walnut oil (unheated)

Remove Vegetable Oils and Trans Fats

  • Canola
  • Corn
  • Soy
  • Safflower
  • Sunflower
  • Hydrogenated vegetable oils (Crisco, etc.)
  • Margarine

Include High-Quality Protein with Every Meal

  • Pasture-raised eggs, chicken and other fowl
  • Grass-fed beef, lamb and other red meats
  • Wild-caught fish
  • Legumes
  • Nuts

Eliminate High-Glutamate Foods

These foods and ingredients can exacerbate neurological symptoms because of the excitoxicity they cause in the brain. These are some of the most-common, high-glutamate foods to remove:

  • Monosodium glutamate (MSG)
  • Hydrolyzed vegetable protein
  • Soy protein isolate
  • Yeast extract
  • Gelatin
  • Barley malt
  • Bouillon
  • Natural flavors
  • Artificial flavors
  • Soy sauce
  • Corn starch
  • Others

Add Fermented Foods and Probiotics

These will keep the gastrointestinal system and microbiome healthy and strong which in turn will keep the immune system strong.

  • Eat kefir yogurts, if dairy is tolerated
  • Eat fermented vegetables such as sauerkraut and kim chi
  • Eat umeboshi plums, which are very alkalizing
  • Eat miso soup, if soy is tolerated
  • Take a quality probiotic, such as VSL #3, Gut Pro, Dr. Ohirra’s Live Cultured Probiotics, Garden of Life, Klaire Labs. Work with your practitioner for a more targeted probiotic.

Optimize Blood Sugar

Blood sugar that is too high can lead to excess inflammation and hormonal imbalances.

Blood sugar that is too low can lead to attention and behavioral problems.

We recommend keeping blood sugar optimized so that it's neither too low nor too high.

Do an Elimination Diet

Children with chronic health conditions often have hidden food sensitivities and intolerances that exacerbate their symptoms. With an elimination diet, remove potentially inflammatory foods such as:

  • Casein
  • Gluten
  • Soy
  • Corn
  • Eggs
  • Fish
  • Shellfish
  • Nuts
  • Peanuts

Clean up Your Environment

  • Identify and remove possible environmental triggers, such as mold, dust, pet dander, and electromagnetic fields (EMFs)
  • Identify and remove possible toxic exposures in the home from purchased products, such as detergents, soaps, lotions, and other cleaning and personal care products
  • Remove animals (both live and stuffed!)
  • Remove carpets
  • Use non-toxic cleaners
  • Use non-toxic building materials

Lower Stress Levels

Viruses, bacteria and other pathogens become more active when the body is in a state of stress.

By teaching your child ways to self-regulate with practices such as prayer, reiki, meditation, yoga, qi gong, tai chi and the Emotional Freedom Technique (tapping), they can become good advocates for themselves and become active participants in the recovery process.

Practitioners of techniques such as EMDR (Eye Movement Desensitization Retraining) and jin shin jyutsu can lower stress levels for your child, as well.

See a Homeopath, Naturopath or Homotoxicologist

These practitioners can diagnose and treat gastrointestinal disorders naturally so that the child’s immune, sensory, neurological and nervous systems develop without being compromised.

Ask Your Practitioner to Run Some Laboratory Tests

  • Enzyme-Linked Immunosorbent Assay (ELISA) for possible food sensitivities and allergies
  • Nutritional deficiencies in vitamins and minerals, especially vitamin D
  • NutrEval by Genova Diagnostics Labs for malabsorption, gut dysbiosis, cellular energy, mitochondrial metabolism, neurotransmitter metabolism, vitamin deficiencies, toxin exposure and detoxification need
  • Organic Acid Test (OAT) for yeast overgrowth, other microbial infections and oxalates
  • Inflammation markers such as C-Reactive Protein (CRP)
  • Fasting blood sugar and insulin levels
  • Comprehensive Digestive Stool Analysis (CDSA)

Have Your Child Tested for PANS/PANDAS

Pathogenic infections and environmental offenders can cross the blood-brain barrier and cause neurological symptoms known collectively as PANS/PANDAS. However, not many practitioners know how to test for and treat these conditions. Common tests are:

  • Serum Anti-Streptolysin O (ASO) titer
  • Serum Anti-Streptococcal DNase B (ASDB) titer
  • Cunningham panel
  • Lyme disease and Lyme co-infections
  • Specific viruses, especially herpetic viruses
  • Mycoplasma pneumoniae infection
  • Heavy metals and other toxins
  • Mold

Use Digestive Aids with your Practitioner's Guidance

  • Betaine hydrochloric acid
  • Digestive enzymes with DPP-IV for gluten and casein intolerances
  • Proteolytic enzymes
  • BiCarb
  • Bromelain
  • Papaya

Use Supplements with Your Practitioner's Guidance

Always work with your practitioner to determine the brand, type and dosage of supplements. Common supplements include the following:

  • Cod liver oil
  • Probiotics
  • Vitamin D3
  • Methylated B complex vitamins
  • GABA, especially PharmaGABA
  • N-acetylcysteine (NAC)
  • Magnesium, zinc, selenium, iodine and other minerals
  • Others

Help Your Child Detoxify

  • Make sure your child is pooping every day. Learn more about how to clear up constipation and diarrhea.
  • Have your child exercise or move every day. Sweating carries toxins out of the body.
  • See a homotoxicologist, naturopath or homeopath for drainage remedies and detoxification aids.
  • Optimize blood sugar to allow the liver to spend more time detoxing rather than processing sugar.
  • Ionic foot baths can help detox unwanted pathogens and are easy to do with children.
  • Infared saunas can detox heavy metals through the skin by sweating. However, this form of detoxification may not be suitable for young children who lack the ability to sweat.
  • Epsom salt baths add sulfur transdermally to help with detox.

Integrate Retained Primitive Reflexes

Most, if not all, children with neurodevelopmental disorders including learning disabilities, have retained primitive reflexes.

Find a therapist that is trained in integrating primitive reflexes, which can cause imbalances in the way your child's brain performs.

See a Chiropractic Neurologist

Chiropractic neurology is patient focused and utilizes the latest assessment techniques to create an individualized protocol to rehabilitate the central nervous system and develop neuroplasticity (changes in the brain) when addressing neurological conditions.

Children with developmental delays, cognitive issues and deficits have improper communication between the right and left sides of the brain.

See a Behavioral/Developmental Optometrist

A developmental optometrist can check for convergence and tracking problems with your child's vision. He or she can correct these issues with vision therapy, lens and prisms. Doing so can improve hand-eye coordination and school performance.

See a Craniosacral Practitioner

Craniosacral therapy can reestablish central nervous system functioning. These practitioners use approaches rich in vestibular, proprioceptive and tactile input and may also do oral motor therapy.

See a Neurofeedback Practitioner

Neurofeedback is approved as a level-one intervention by the American Academy of Pediatrics for ADD and ADHD, which are learning disabilities.

Even if your child doesn't have ADD or ADHD, they may still benefit from neurofeedback.

Find a practitioner that can perform a QEEG (quantitative electroencephalograph) brain map first so you can understand how your child's brain works.

See a Sensory-Integration Occupational Therapist

These occupational therapists address a variety of sensory issues with a child using hands-on equipment. This type of therapy calms down the nervous system to help integrate the senses and retained reflexes.

See a Chiropractor

A chiropractor can perform spinal cord adjustments, which can improve communication in the nervous system.

See an Auditory Therapist

Many children with learning disabilities have auditory processing problems that may be causing problems with focus and concentration.

An auditory therapist can devise a listening program that is specific to your child's needs. These programs can retrain the brain, calm down the nervous system and reduce sound sensitivities.

Find a Brain Gym Practitioner

A Brain Gym practitioner can have your child do exercises for sensorimotor coordination, self-calming and self-management.

Work with a Health Coach

Our Epidemic Answers health coaches are trained to understand the root causes of your child's chronic health condition.

They provide hands-on helping with the practical matters of healing such as cooking healthy foods, removing toxins from the household and helping you work more efficiently with your practitioner.

See an Acupuncturist

Acupuncture can help lower stress and anxiety associated with sensory processing. It can also help with blood-sugar and hormonal regulation.

See a NAET or BioSET Practitioner

Children with chronic health conditions typically also have food allergies and/or food sensitivities and intolerances.

NAET (Namudripad's Allergy Elimination Technique) and BioSET are two non-invasive methods of allergy elimination.

Use Sensory Therapies and Tools

Still Looking for Answers?

Visit the Epidemic Answers Practitioner Directory to find a practitioner near you.

Join us inside our online membership community for parents, Healing Together, where you’ll find even more healing resources, expert guidance, and a community to support you every step of your child’s healing journey.

Sources & References

Accardo, P.J., et al. Toe walking in autism: further observations. J Child Neurol. 2015 Apr;30(5):606-9.

Adams, J.B., et al. Comprehensive Nutritional and Dietary Intervention for Autism Spectrum Disorder-A Randomized, Controlled 12-Month Trial. Nutrients. 2018 Mar 17;10(3).

Adams, J.B., et al. Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatr. 2011;11:111.

Adams, J.B., et al. Mercury in first-cut baby hair of children with autism versus typically-developing children. Toxicological & Environmental Chemistry. 2007 Jun;70(12):1046-51.

Adams, J.B., et al. Mercury, Lead, and Zinc in Baby Teeth of Children with Autism Versus Controls. Journal of Toxicology and Environmental Health. 2007 Jun;70(12):1046-51.

Adams, J.B., et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab (Lond) 2011 Jun 8;8(1):34.

Adams, J.B., et al. Vitamin/mineral/micronutrient supplement for autism spectrum disorders: a research survey. BMC Pediatr. 2022 Oct 13;22(1):590.

Ahn, R.R., et al. Prevalence of parents’ perceptions of sensory processing disorders among kindergarten children. Am J Occup Ther. May-Jun 2004;58(3):287-93.

Alabdali, A., et al. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behav Brain Funct. 2014;10:14.

Alabdali, A., et al. Association of social and cognitive impairment and biomarkers in autism spectrum disorders. J Neuroinflammation. 2014;11:4.

Aldad, T.S., et al. Fetal Radiofrequency Radiation Exposure From 800-1900 Mhz-Rated Cellular Telephones Affects Neurodevelopment and Behavior in Mice. Sci Rep. 2012;2:312.

Ashraghi, R.S., et al. Early Disruption of the Microbiome Leading to Decreased Antioxidant Capacity and Epigenetic Changes: Implications for the Rise in Autism. Front. Cell. Neurosci., 15 Aug 2018.

Ashwood, P., et al. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun. 2011 Jan;25(1):40-5.

Ashwood, P., et al. The immune response in autism: a new frontier for autism research. Journal of Leukocyte Biology. 2006 Jul;80(1):1-15.

Atladóttir, H.Ó., et al. Association of family history of autoimmune diseases and autism spectrum disorders. Pediatrics. 2009 Aug;124(2):687-94.

Atladóttir, H.Ó., et al. Autism after infection, febrile episodes, and antibiotic use during pregnancy: an exploratory study. Pediatrics. 2012 Dec;130(6):e1447-54.

Baker, S. Canaries and Miners. Alternative Therapies in Health and Medicine. Nov-Dec 2008;14(6):24-6.

Barrett, B. Substantial lifelong cost of autism spectrum disorder. J Pediatr. 2014;165(5):1068-9

Bateman, C. Autism–mitigating a global epidemic. S Afr Med J. 2013;103(5):276-7.

Ben-Sasson, A., et al. Sensory over-responsivity in elementary school: prevalence and social-emotional correlates. J Abnorm Child Psychol. 2009 Jul;37(5):705-16.

Bernard, S., et al. Autism: a novel form of mercury poisoning. Med Hypotheses. 2001 Apr;56(4):462-71.

Binder, D.K., et al. Brain-derived neurotrophic factor. Growth Factors. 2004 Sep;22(3):123-31.

Bittker, S.S., et al. Postnatal Acetaminophen and Potential Risk of Autism Spectrum Disorder among Males. Behav Sci (Basel). 2020 Jan 1;10(1):26.

Bitsika, V., et al. Hypothalamus-pituitary-adrenal axis daily fluctuation, anxiety and age interact to predict cortisol concentrations in boys with an autism spectrum disorder. Physiol Behav. 2015;138:200-7

Bjørklund, G., et al. Gastrointestinal alterations in autism spectrum disorder: What do we know? Neurosci Biobehav Rev. 2020 Nov:118:111-120.

Blaxill, Mark, et al. Autism Tsunami: the Impact of Rising Prevalence on the Societal Cost of Autism in the United States. J Autism Dev Disord. 2022 Jun;52(6):2627-2643.

Blaylock, R.L. A possible central mechanism in autism spectrum disorders, part 1. Altern Ther Health Med. 2008 Nov-Dec;14(6):46-53.

Blaylock, R.L. A possible central mechanism in autism spectrum disorders, part 2: immunoexcitotoxicity. Altern Ther Health Med. 2009 Jan-Feb;15(1):60-7.

Blaylock, R.L. A possible central mechanism in autism spectrum disorders, part 3: the role of excitotoxin food additives and the synergistic effects of other environmental toxins. Altern Ther Health Med. 2009 Mar-Apr;15(2):56-60.

Blaylock, R.L., et al. Immune-glutamatergic dysfunction as a central mechanism of the autism spectrum disorders. Curr Med Chem. 2009;16(2):157-70.

Boat, T.F., et al. Prevalence of Learning Disabilities. Mental Disorders and Disabilities Among Low-Income Children. Washington (DC): National Academies Press (US); 2015 Oct 28. 16.

Borre, Y.E., et al. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014 Sep;20(9):509-18.

Bouder, et al. Brief report: Quantifying the impact of autism coverage on private insurance premiums. J Autism Dev Disord. 2009;39(6):953-7

Bradstreet, et al. Biomarker-guided interventions of clinically relevant conditions associated with autism spectrum disorders and attention deficit hyperactivity disorder. Altern Med Rev. 2010;15(1):15-32.

Bransfield, R.C., et al. The association between tick-borne infections, Lyme borreliosis and autism spectrum disorders. Medical Hypotheses. 2008;70(5):967-74.

Breitenkamp, A.F., et al. Voltage-gated Calcium Channels and Autism Spectrum Disorders. Curr Mol Pharmacol. 2015;8(2):123-32.

Brown, et al. Observable essential fatty acid deficiency markers and autism spectrum disorder. Breastfeed Rev. 2014;22(2):21-6

Buescher, et al. Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatr. 2014;168(8):721-8.

Buie, T., et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics. 2010 Jan;125 Suppl 1:S1-18.

Buie, T., et al. Recommendations for evaluation and treatment of common gastrointestinal problems in children with ASDs. Pediatrics. 2010 Jan;125 Suppl 1:S19-29.

Bull, G., et al. Indolyl-3-acryloylglycine (IAG) is a putative diagnostic urinary marker for autism spectrum disorders. Med Sci Monit. 2003;9(10):CR422-5.

Büsselberg, D. Calcium channels as target sites of heavy metals. Toxicol Lett. 1995 Dec:82-83:255-61.

Camilleri, M. Serotonin in the gastrointestinal tract. Curr Opin Endrocrinol Diabetes Obes. 2009 Feb;16(1):53-9.

Carlo, G.L., et al. Wireless radiation in the aetiology and treatment of autism: clinical observations and mechanisms. Journal of the Australasian College of Nutritional and Environmental Medicine, 26(2), 3–7.

Centers for Disease Control and Prevention. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. Accessed 24 Mar 2023.

Cheng, N., et al. Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches. Front Mol Neurosci. 2017 Feb 21:10:34.

Connolly, A.M., et al. Serum autoantibodies to brain in Landau-Kleffner variant, autism, and other neurologic disorders. The Journal of Pediatrics. 1999 May;134(5):607-13.

Critchfield, et al. The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract. 2011;2011:161358.

Cubala-Kucharska M. The review of most frequently occurring medical disorders related to aetiology of autism and the methods of treatment. Acta Neurobiol Exp (Wars). 2010;70(2):141-6.

Currenti, S.A. Understanding and determining the etiology of autism. Cell Mol Neurobiol. 2010 Mar;30(2):161-71.

Dale, R.C., et al. Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity. Brain. 2004 Jan;127(Pt 1):21-33.

Darling, A.L., et al. Association between maternal vitamin D status in pregnancy and neurodevelopmental outcomes in childhood: results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Br J Nutr 2017 Jun;117(12):1682-1692.

Dasdaq, S., et al. Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue. Int J Radiat Biol. 2015 Jul;91(7):555-61.

Dave, D., et al. The effect of an increase in autism prevalence on the demand for auxiliary healthcare workers : evidence from California. Cambridge, MA: National Bureau of Economic Research; 2012. 37 p.p.

D’Eufemia, P., et al. Abnormal intestinal permeability in children with autism. Acta Paediatr. 1996 Sep;85(9):1076-9.

Deisher, T.A., et al. Impact of environmental factors on the prevalence of autistic disorder after 1979. J Public Health and Epidemiology. Sep 2014;6(9):271-286.

de Magistris, et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr. 2010;51(4):418-24

Deth, R., et al. How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. Neurotoxicology. 2008;29(1):190-201

Dyńka, D., et al. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients. 2022 Nov 24;14(23):5003.

Elamin, N.E., et al. Brain autoantibodies in autism spectrum disorder. Biomark Med. 2014;8(3):345-52

El-Ansary, A., et al. Neuroinflammation in autism spectrum disorders. J Neuroinflammation. 2012;9:265.

El-Ansary, A., et al. Lipid mediators in plasma of autism spectrum disorders. Lipids Health Dis. 2012;11:160.

Egset, K., et al. Magno App: Exploring Visual Processing in Adults with High and Low Reading Competence. Scandinavian Journal of Educational Research. 07 Jan 2020.

Erickson, C.A., et al. Gastrointestinal Factors in Autistic Disorder: A Critical Review. Journal of Autism and Developmental Disorders. 2005 Dec;35(6):713-27.

Faber, S., et al. A cleanroom sleeping environment’s impact on markers of oxidative stress, immune dysregulation, and behavior in children with autism spectrum disorders. BMC Complement Altern Med. 2015;15:71

Frustaci, A., et al. Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med. 2012;52(10):2128-41

Frye, R.E., et al. Redox metabolism abnormalities in autistic children associated with mitochondrial disease. Transl Psychiatry. 2013;3:e273

Frye, R.E., et al. Metabolic pathology of autism in relation to redox metabolism. Biomark Med. 2014;8(3):321-30

Gabriele, S., et al. Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur Neuropsychopharmacol. 2014;24(6):919-29

Gadow, K.D., et al. Association of COMT (Val158Met) and BDNF (Val66Met) gene polymorphisms with anxiety, ADHD and tics in children with autism spectrum disorder. J Autism Dev Disord. 2009;39(11):1542-51

Gadow, K.D., et al. Association of DRD4 polymorphism with severity of oppositional defiant disorder, separation anxiety disorder and repetitive behaviors in children with autism spectrum disorder. Eur J Neurosci. 2010;32(6):1058-65

Gebril, O.H., et al. HFE gene polymorphisms and the risk for autism in Egyptian children and impact on the effect of oxidative stress. Dis Markers. 2011;31(5):289-94

Geier, D.A., et al. The biological basis of autism spectrum disorders: Understanding causation and treatment by clinical geneticists. Acta Neurobiol Exp (Wars). 2010;70(2):209-26

Ghanizadeh, A. Increased glutamate and homocysteine and decreased glutamine levels in autism: a review and strategies for future studies of amino acids in autism. Dis Markers. 2013;35(5):281-6

Goldani, A.A., et al. Biomarkers in autism. Front Psychiatry. 2014;5:100

Goncalves, M.V.M., et al. Pediatric acute-onset neuropsychiatric syndrome (PANS) misdiagnosed as autism spectrum disorder. Immunol Lett. 2018 Nov;203:52-53.

Gough, S., et al. Neuroprotection by the Ketogenic Diet: Evidence and Controversies. Front Nutr. 2021 Nov 23:8:782657.

Grandjean, P., et al. Developmental neurotoxicity of industrial chemicals. Lancet. 2006 Dec 16;368(9553):2167-78.

Grimaldi, R., et al. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome. 2018 Aug 2;6(1):133.

Guilford, T., et al. Deficient Glutathione in the Pathophysiology of Mycotoxin-Related Illness. Toxins (Basel). 2014 Feb 10;6(2):608-23.

Guyol, G. Who’s crazy here?: Steps for recovery without drugs for: ADD/ADHD, addiction & eating disorders, anxiety & PTSD, depression, bipolar disorder, schizophrenia, autism. 1st U.S. ed. Stonington, CT: Ajoite Pub.; 2010. 123 p.p.

Hacohen, Y., et al. N‐methyl‐d‐aspartate (NMDA) receptor antibodies encephalitis mimicking an autistic regression. Dev Med Child Neurol. 2016 Oct;58(10):1092-4.

Hallmayer, J., et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011 Nov;68(11):1095-102.

Hamad, A.F., et al. Prenatal antibiotics exposure and the risk of autism spectrum disorders: A population-based cohort study. PLoS One. 2019 Aug 29;14(8):e0221921.

Hejitz, R.D., et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3047-52.

Herbert, M.R., et al. Autism and environmental genomics. Neurotoxicology. 2006;27(5):671-84.

Herbert, M.R, et al. Autism and EMF? Plausibility of a pathophysiological link–Part I. Pathophysiology 20.3 (2013): 191-209.

Herbert, M.R., et al. Autism and EMF? Plausibility of a pathophysiological link Part II. Pathophysiology 20.3 (2013): 211-234.

Herbert, M.R. Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol. 2010 Apr;23(2):103-10.

Hertz-Picciotto, I., et al. The rise in autism and the role of age at diagnosis. Epidemiology. 2009 Jan;20(1):84-90.

Hertz-Picciotto, I., et al. Organophosphate exposures during pregnancy and child neurodevelopment: Recommendations for essential policy reforms. PLoS Med. 2018 Oct 24;15(10):e1002671.

Hertz-Picciotto, I., et al. Prenatal exposures to persistent and non-persistent organic compounds and effects on immune system development. Basic Clin Pharmacol Toxicol. 2008 Feb;102(2):146-54.

Heyer, N.J., et al. Disordered porphyrin metabolism: a potential biological marker for autism risk assessment. Autism Res. 2012;5(2):84-92.

Holmes, A., et al. Reduced Levels of Mercury in First Baby Haircuts of Autistic Children. International Journal of Toxicology. Jul-Aug 2003;22(4):277-85.

Horvath, K., et al. Autistic disorder and gastrointestinal disease. Current Opinion in Pediatrics. 2002 Oct;14(5):583-7.

Horvath, K., et al. Gastrointestinal abnormalities in children with autistic disorder. Journal of Pediatrics. 1999 Nov;135(5):559-63.

Howsmon, D. P., et al. Multivariate techniques enable a biochemical classification of children with autism spectrum disorder versus typically‐developing peers: A comparison and validation study. Bioengineering & Translational Medicine. 2018. doi:10.1002/btm2.10095.

Hyman, M. Autism: Is It All in the Head? Alternative Therapies in Health and Medicine. Nov-Dec 2008;14(6):12-5.

Isaksson, J., et al. Brief Report: Association Between Autism Spectrum Disorder, Gastrointestinal Problems and Perinatal Risk Factors Within Sibling Pairs. J Autism Dev Disord. 2017 Aug;47(8):2621-2627.

Ivanovski, I., et al. Aluminum in brain tissue in autism. J Trace Elem Med Biol. 2019 Jan;51:138-140.

Jafari, M.H., et al. The Relationship Between the Level of Copper, Lead, Mercury and Autism Disorders: A Meta-Analysis. Pediatric Health, Medicine and Therapeutics. 21 Sep 2020(11):369—378.

James, S.J., et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004;80(6):1611-7.

Jarusiewicz, B. Efficacy of Neurofeedback for Children in the Autistic Spectrum: A Pilot Study. Journal of Neurotherapy. 2002;6(4).

Jyonouchi, H., et al. Dysregulated innate immune responses in young children with autism spectrum disorders: their relationship to gastrointestinal symptoms and dietary intervention. Neuropsychobiology. 2005;51(2):77-85.

Jyonouchi, H., et al. Impact of innate immunity in a subset of children with autism spectrum disorders: a case control study. Journal of Neuroinflammation. 2008 Nov 21;5:52.

Kaluzna-Czaplinska, J., et al. Identification of organic acids as potential biomarkers in the urine of autistic children using gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;966:70-6.

Kane, R.C. A possible association between fetal/neonatal exposure to radiofrequency electromagnetic radiation and the increased incidence of autism spectrum disorders (ASD). Med Hypotheses. 2004;62(2):195-7.

Kang, D.W., et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017 Jan 23;5(1):10.

Kang, D.W., et al.  Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Scientific Reports. 9, 5821 (2019).

Karhu, E., et al. Nutritional interventions for autism spectrum disorder. Nutr Rev. 2020 Jul 1;78(7):515-531.

Kern, J.K., et al. A biomarker of mercury body-burden correlated with diagnostic domain specific clinical symptoms of autism spectrum disorder. Biometals. 2010;23(6):1043-51

Khan, Z., et al. Slow CCL2-dependent translocation of biopersistent particles from muscle to brain. BMC Med. 2013 Apr 4;11:99.

Konstantareas, M.M., et al. Ear infections in autistic and normal children. Journal of Autism and Developmental Disorders. 1987 Dec;17(4):585-94.

Kordulewska, N.K., et al. Serum cytokine levels in children with spectrum autism disorder: Differences in pro- and anti-inflammatory balance. J Neuroimmunol. 2019 Dec 15;337:577066.

Kuwabara, H., et al. Altered metabolites in the plasma of autism spectrum disorder: a capillary electrophoresis time-of-flight mass spectroscopy study. PLoS One. 2013;8(9):e73814.

Lathe, R. Environmental factors and limbic vulnerability in childhood autism; Clinical report. American Journal of Biochemistry and Biotechnology. 4 (2): 183-197, 2008.

Lathe, R. Microwave Electromagnetic Radiation and Autism. E-Journal of Applied Psychology. June 2009;5(1):11-30.

Lavelle, T.A., et al. Economic burden of childhood autism spectrum disorders. Pediatrics. 2014;133(3):e520-9.

Lee, K., et al. Autism-associated Shank3 mutations alter mGluR expression and mGluR-dependent but not NMDA receptor-dependent long-term depression. Synapse. 2019 Aug;73(8):e22097.

Lee, R.W.Y., et al. A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder. Physiol Behav. 2018 May 1:188:205-211.

Li, Q., et al. A Ketogenic Diet and the Treatment of Autism Spectrum Disorder. Front Pediatr. 2021 May 11:9:650624.

Li, Q., et al. Prevalence of Autism Spectrum Disorder Among Children and Adolescents in the United States From 2019 to 2020. JAMA Pediatr. 2022 Sep 1;176(9):943-945.

Li, S.O., et al. Serum copper and zinc levels in individuals with autism spectrum disorders. Neuroreport. 2014;25(15):1216-20.

Li, Y., et al. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatrics. 2020(20)449.

Liao, T.C., et al. Comorbidity of Atopic Disorders with Autism Spectrum Disorder and Attention Deficit/Hyperactivity Disorder.  J Pediatr. 2016 Apr;171:248-55.

López-Aranda, M.F., et al. Postnatal immune activation causes social deficits in a mouse model of tuberous sclerosis: Role of microglia and clinical implications. Sci Adv. 2021 Sep 17;7(38):eabf2073.

Madra, M., et al. Gastrointestinal Issues and Autism Spectrum Disorder. Psychiatr Clin North Am. 2021 Mar; 44(1): 69–81.

Maenner, M.J., et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years – Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018. MMWR Surveill Summ. 2021 Dec 3;70(11):1-16.

Maher, P. Methylglyoxal, advanced glycation end products and autism: is there a connection? Med Hypotheses. 2012;78(4):548-52.

Melke, J., et al. Abnormal melatonin synthesis in autism spectrum disorders. Mol Psychiatry. 2008 Jan;13(1):90-8.

Mierau, S.B., et al. Metabolic interventions in Autism Spectrum Disorder. Neurobiol Dis. 2019 Dec:132:104544.

Mold, M., et al. Aluminium in brain tissue in autism. J Trace Elem Med Biol. 2018 Mar;46:76-82.

Momeni, N., et al. A novel bloodbased biomarker for detection of autism spectrum disorders. Transl Psychiatry. 2012;2:e91.

Mu, C., et al. Metabolic Framework for the Improvement of Autism Spectrum Disorders by a Modified Ketogenic Diet: A Pilot Study. J Proteome Res. 2020 Jan 3;19(1):382-390.

Nankova, B.B., et al. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells–possible relevance to autism spectrum disorders. PLoS One. 2014;9(8):e103740.

Naviaux, R.K. Metabolic features of the cell danger response. Mitochondrion. 2014 May:16:7-17.

Nemecheck, P., et al. Autism Spectrum Disorder Symptoms Improve with Combination Therapy Directed at Improving Gut Microbiota and Reducing Inflammation. Applied Psychiatry. 2020 Jul; (1)1.

Ngounou Wetie, A.G., et al. A pilot proteomic study of protein markers in autism spectrum disorder. Electrophoresis. 2014;35(14):2046-54.

Nicolson, G.L., et al. Chronic Mycoplasmal Infections in Autism Patients. Proc. Intern. Mind of a Child Conference, Sydney, Australia 2002.

Nicolson, G.L., et al. Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus-6 coinfections in the blood of patients with autistic spectrum disorders. J Neurosci Res. 2007 Apr;85(5):1143-8.

Noto, A., et al. The urinary metabolomics profile of an Italian autistic children population and their unaffected siblings. J Matern Fetal Neonatal Med. 2014;27 Suppl 2:46-52.

Oliveira, G., et al. Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol. 2005 Mar;47(3):185-9.

Olivito, I., et al. Ketogenic diet ameliorates autism spectrum disorders-like behaviors via reduced inflammatory factors and microbiota remodeling in BTBR T+ Itpr3tf/J mice. Exp Neurol. 2023 Aug:366:114432.

Ozonoff, S., et al. Onset patterns in autism: Variation across informants, methods, and timing. Autism Res. 2018 Mar 10.

Pall, M.L. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. J Chem Neuroanat. 2016 Sep;75(Pt B):43-51.

Pall, M.L., The Autism Epidemic Is Caused by EMFs, Acting via Calcium Channels and Chemicals Acting via NMDA-Rs: Downstream Effects Cause Autism (conference presentation). 2015.

Pall, M.L. Wi-Fi is an important threat to human health. Environ Res. 2018 Jul;164:405-416.

Palmer, R.F., et al. Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health and Place. 2009 Mar;15(1):18-24.

Palmieri, L., et al. Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC. Mol Psychiatry. 2010 Jan;15(1):38-52.

Palmieri, L., et al. Mitochondrial dysfunction in autism spectrum disorders: Cause or effect? Biochim Biophys Acta. 2010 June – July;1797(6-7):1130-1137.

Pastural, E., et al. Novel plasma phospholipid biomarkers of autism: mitochondrial dysfunction as a putative causative mechanism. Prostaglandins Leukot Essent Fatty Acids. 2009 Oct;81(4):253-64.

Patrick, R.P., et al. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J. 2014;28(6):2398-413.

Patterson, P.H. Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res. 2009 Dec 7;204(2):313-21.

Peterson, B.S., et al. Brain lactate as a potential biomarker for comorbid anxiety disorder in autism spectrum disorder-reply. JAMA Psychiatry. 2015;72(2):190-1.

Pietrzak, D., et al. The Therapeutic Role of Ketogenic Diet in Neurological Disorders. Nutrients. 2022 May 6;14(9):1952.

Pino-López, M., et al. [Parental occupational exposures and autism spectrum disorder in children]. Rev Esp Salud Publica. 2013 Jan-Feb;87(1):73-85.

Qiu, C., et al. Association Between Epidural Analgesia During Labor and Risk of Autism Spectrum Disorders in Offspring. JAMA Pediatr. 2020 Oct 12.

Ranjbar, A., et al. Comparison of urinary oxidative biomarkers in Iranian children with autism. Res Dev Disabil. 2014;35(11):2751-5.

Ratajczak, H.V. Theoretical aspects of autism: biomarkers–a review. J Immunotoxicol. 2011;8(1):80-94.

Reynolds, A., et al. Iron status in children with autism spectrum disorder. Pediatrics. 2012;130 Suppl 2:S154-9.

Rossignol, D. Diagnosis Autism: Now What? A Simplified Biomedical Approach. The Autism File. 2009(3).

Rutter, M. Changing concepts and findings on autism. J Autism Dev Disord. 2013;43(8):1749-57

Ruggeri, B., et al. Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology (Berl). 2014;231(6):1201-16.

Sakurai, T., et al. Slc25a12 disruption alters myelination and neurofilaments: a model for a hypomyelination syndrome and childhood neurodevelopmental disorders. Biol Psychiatry. 2010 May 1;67(9):887-94.

Skripuletz, T., et al. The choline pathway as a strategy to promote central nervous system (CNS) remyelination. Neural Regen Res. 2015 Sep;10(9):1369-70.

Smith, J., et al. Ketogenic diet restores aberrant cortical motor maps and excitation-to-inhibition imbalance in the BTBR mouse model of autism spectrum disorder. Behav Brain Res. 2016 May 1:304:67-70.

Spilioti, M., et al. Evidence for treatable inborn errors of metabolism in a cohort of 187 Greek patients with autism spectrum disorder (ASD). Front Hum Neurosci. 2013;7:858.

Stafstrom, C.E., et al. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol. 2012 Apr 9:3:59.

Strunecka, A., et al. Immunoexcitotoxicity as the central mechanism of etiopathology and treatment of autism spectrum disorders: A possible role of fluoride and aluminum. Surg Neurol Int. 2018 Apr 9;9:74.

Taurines, R., et al. Expression analyses of the mitochondrial complex I 75-kDa subunit in early onset schizophrenia and autism spectrum disorder: increased levels as a potential biomarker for early onset schizophrenia. Eur Child Adolesc Psychiatry. 2010 May;19(5):441-8.

Theoharides, T.C. Is a subtype of autism an allergy of the brain? Clin Ther. 2013; 35(5):584-91

Thomas, R.H., et al. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders. J Neuroinflammation. 2012;9:153.

Thornton, I.M. Out of time: a possible link between mirror neurons, autism and electromagnetic radiation. Med Hypotheses. 2006;67(2):378-82.

Tomcheck, S.D., et al. Sensory Processing in Children with and without Autism: A Comparative Study Using the Short Sensory Profile. American Journal of Occupational Therapy. 2007. 61, 190-200.

Tomljenovic, L., et al. Do aluminum adjuvants contribute to the rising prevalence of autism? J Inorg Biochem. 2011 Nov;105(11):1489-99.

Vargas, D.D., et al. Effectiveness of nutritional interventions on behavioral symptomatology of autism spectrum disorder: a systematic review. Nutr Hosp. 2022 Dec 20;39(6):1378-1388.

Vargas, D.L., et al. Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology. 2005 Jan;57(1):67-81.

Vojdani, A., et al. A Gut Feeling for Immune Dysregulation & Neuroinflammation in Autism. The Autism File. 2009(31).

Vuillermot, S., et al. Vitamin D treatment during pregnancy prevents autism-related phenotypes in a mouse model of maternal immune activation. Mol Autism. 2017 Mar 7;8:9.

Wang, L., et al. Gastrointestinal microbiota and metabolite biomarkers in children with autism spectrum disorders. Biomark Med. 2014;8(3):331-44.

Warner, B.B. The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. Pediatr Res. 2019 Jan;85(2):216-224.

Wasilewska, J., et al. Gastrointestinal symptoms and autism spectrum disorder: links and risks – a possible new overlap syndrome. Pediatric Health Med Ther. 2015; 6: 153–166.

Waterhouse, L. Autism Overflows: Increasing Prevalence and Proliferating Theories. Neuropsychology Review. 2008 Dec;18(4):273-86.

Wilson, S., et al. Role of the NLRP3 Inflammasome in Responses. J Allergy Clin Immunol. 2012 Feb 1; 129(2):Supplement AB162.

Windham, G.C., et al. Autism Spectrum Disorders in Relation to Distribution of Hazardous Air Pollutants in the San Francisco Bay Area. Environmental Health Perspectives. 2006 Sep;114(9):1438-44.

Woodman, A.C., et al. Change in autism symptoms and maladaptive behaviors in adolescence and adulthood: the role of positive family processes. J Autism Dev Disord. 2015;45(1):111-26

Wu, D.M., et al. Relationship Between Neonatal Vitamin D at Birth and Risk of Autism Spectrum Disorders: the NBSIB Study. J Bone Miner Res. 2018 Mar;33(3):458-466.

Zablotsky, B., et al. Estimated Prevalence of Children With Diagnosed Developmental Disabilities in the United States, 2014–2016. National Center for Health Statistics. NCHS Data Brief, No. 291, Nov 2017.

Zablotsky, B., et al. Prevalence and Trends of Developmental Disabilities among Children in the United States: 2009-2017. Pediatrics. 2019 Oct;144(4):e20190811.

Zaigham, M., et al. Prelabour caesarean section and neurodevelopmental outcome at 4 and 12 months of age: an observational study. BMC Pregnancy and Childbirth. 2020 (20)564.

Resources
Articles

Klinghardt, Dietrich. Autism May Be Linked to Electromagnetic Radiation Levels in Mother’s Bedroom During Pregnancy.

Books

Adams, Mike. The Truth About Aspartame, MSG and Excitoxins. Truth Publishing, Inc., 2010.

Blaylock, Russell L. Excitotoxins: The Taste That Kills. Health Press, 1996.

Bock, Kenneth. Healing the New Childhood Epidemics: Autism, ADHD, Asthma, and Allergies: The Groundbreaking Program for the 4-A Disorders. New York, NY. Ballantine Books, 2008.

Brandes, Bonnie. The Symphony of Reflexes: Interventions for Human Development, Autism, ADHD, CP, and Other Neurological Disorders, 2016.

Cahalan, Susannah. Brain on Fire: My Month of Madness. Simon & Schuster, 2013.

Campbell-McBride, Natasha. Gut and Psychology Syndrome: Natural Treatment for Autism, Dyspraxia, A.D.D., Dyslexia, A.D.H.D., Depression, Schizophrenia, 2010.

Giustra-Kozek, Jennifer. Healing without hurting: treating ADHD, apraxia, and autism spectrum disorders naturally and effectively without harmful medication. Howard Beach, NY: Changing Lives Press, 2014.

Herbert, Martha, Weintraub Karen. The Autism Revolution: Whole-Body Strategies for Making Life All It Can Be. New York: Ballantine Books; 2012.

Hong, Maria Rickert. Almost Autism: Recovering Children from Sensory Processing Disorder, A Reference for Parents and Practitioners. 2014.

Kaufman, Raun K. Autism breakthrough: the groundbreaking method that has helped families all over the world. First edition. ed. New York: St. Martin’s Press; 2014. x, 353 p.p.

Lambert, Beth, et al. Brain Under Attack: A Resource for Parents and Caregivers of Children with PANS, PANDAS, and Autoimmune Encephalitis. Answers Publications, 2018.

Lemer, Patricia S. Outsmarting Autism: The Ultimate Guide to Management, Healing and Prevention for Individuals with Autism Spectrum Disorders. Tarentum, PA, Word Association Publishers, 2014.

O’Hara, Nancy. Demystifying PANS/PANDAS: A Functional Medicine Desktop Reference on Basal Ganglia Encephalitis. DPWN Publishing, 2022.

Romaniec, Mary. Victory Over Autism: Lessons on Raising an Autism-Free Child. New York, NY: Skyhorse Publishing, 2015.

Scott, Trudy. The Antianxiety Food Solution: How the Foods You Eat Can Help You Calm Your Anxious Mind, Improve Your Mood and End Cravings. New Harbinger Publications, 2011.

Sears, Robert W. The Autism Book: What Every Parent Needs to Know about Early Detection, Treatment, Recovery, and Prevention. 1st ed. New York, NY: Little, Brown, 2010.

Seroussi, Karyn. Unraveling the Mystery of Autism and Pervasive Developmental Disorder: A Mother’s Story of Research and Recovery. New York: Simon & Schuster, 2000.

Presentations

Pall, Martin. EMFs and Chemicals as the Main Drivers of the Autism Epidemic: Mechanisms of Action. AutismOne Conference, 2017.

Websites

Amy Yasko’s list of foods with high free glutamates

Clear Light Ventures

Katie Reid’s pantry list of recommended foods.

Unblind My Mind: Dr. Katie Reid’s website gives extensive explanation about the science, a TED talk by Dr. Reid and video tutorials to help parent’s discern appropriate foods in a local supermarket.

Videos

Excitotoxins, Neurotoxins & Human Neurological Disease Lecture by Russell Blaylock MD

Glutamate, Excitoxicity and Autism

Peter Sullivan: Understanding Autism

Unblind My Mind: What Are We Eating? Dr. Katherine Reid at TEDxYouth@GrassValley

 

Free Guide: The Path to Recovery

Subscribe to our free email updates and get The Path to Recovery guide for free!